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Solution suggestions

Using partial integration we compute
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for n=1,2,.... The Fourier series of f(t) is
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One could compute the complex Fourier series instead.

Look at the Fourier series of f near n. Then
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for some constant k, so we have the two ordinary differential equations
X"-kX=0 1
T' - c*kT=0 ®)
subject to X(0) = 0 and X (1) = 0. It is easily verified that k = 0 yields only trivial solutions (use the
boundary conditions for equation (1)), so consider k = —p? < 0. The solutions of equation (1) are then

of the form
X(x)=Apcospx+ Bpsinpx,

and since 0 = X(0) = Ap, we have
X(x) = Bpsinpx.

Since 0 = X (1) = By sin p, non-trivial solutions must have p € {x,27,...}, giving
X;(x) = B;sinlnx
for I =1,2,.... Thus equation (2) becomes
T)(t) + (cnD)* Ty(1) =0,
which has solutions
Ty(0) = e—(cnl)zr.
The solutions asked for are therefore linear combinations of

(D2t .
uy(x, 1) = Bje~ ™ gin I x.

Letting v(x, t) = u(x, t) — x, we see that v satisfies the same PDE as u, i.e.
v ,0%
or  ox?’
The boundary condition u(1, t) = 1 gives v(1, f) =0, so in fact v satisfies the same boundary conditions
as u did in problem 2a, and hence the general solution is (from 2a)

(o)
2
vix, =) Bje 7 gin Inx.
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The initial condition x(2 — x) = u(x,0) = v(x,0) + x gives v(x,0) = x — x2, and so

(o)
x—-x*=v(x 1= Z B;sinlnx.
=1

Since the left hand side of this equation defines a continuous function f: [0, 1] — R, the Fourier series
theorem gives that the B;’s are in fact the Fourier coeffieients of the 2-periodic odd extension of f. We
compute these:
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Calling the first term a; and the second term a», we find by partial integration
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and hence the solution of the PDE with given boundary conditions is
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We have
Y0 =t(y®) +t=t((y@)?+1) = f(t,y(1)),

aswell as fp =0and yy = 1. With h =0.2,

kv = hf(t,y0) =0.2- f(0,1) =0
ko = hf(l'o + h,y() +k;)=0.2 -f(0.2, 1) =0.08.

Thus 1
y(O.Z) =~ f/ =)1=)Yo+ z(kl + kz) =1.04.

From problem 3a and the text we have
y(0.2)=9+€=1.04+E.
With fwo steps, we have y(0.2) = j, i.e.
¥(0.2) = 7+ 2& =1.040714 + 2¢,

where € is the error in each of the two steps. Since the local error in Heun’s method is of order 3, and j
is computed with half the step size of j, we have
1

8:23

I A
E=—¢.

8
Thus

1
1.04 + & = y(0.2) = 1.040714 + 2 = 1.040714 +2§é,

which when solved for & results in & = 0.96-1073.

We compute
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The second integral on the last line must be zero since the left hand side is real (in fact, the integrand is
odd, so the integral is indeed zero). The integrand in the first integral is even, so

0 do,

1 oocosw—wsinwd 1[00 CcoSw — wsinw
21 J-oo 1+ w? 7 Jo

1+w?

and so the integral we were asked to compute is 0.
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For b > 0, define g5, : R — R by g5(x) = e b*" . We recognize the integral as a convolution, so that the
equation in the problem becomes

f*g =g
Fourier transforming gives
V2nf-g =g,

and we know well that

5 1 —w?iap
pw) = —=e "7,
& V2b
so we have
1Bt 2
2 2 -w?/8 5
(w) = — =—0c¢ = — 9 (w).
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Taking the inverse Fourier transform gives

2 5.2
er

2
fx)= ﬁgz(x)— N

While it is perfectly OK to approach the problem directly using Newton’s divided differences or a
Lagrange scheme, we can save ourselves some work by noticing that the polynomial g given by
g(x) = p(x) — 1 has zeros at 0 and 1. We thus have

px)-1=qx)=x(x-1Dr(x)
for some polynomial r. In particular, the unused interpolation data becomes

7==-2-(-2-Dr(-2)+1=6r(-2)+1 = r(-2)=1
3==1-(-1-Dr-D+1=2r(-1+1 = r(-1)=1
3=2-2-Dr@)+1=2r@2)+1 = r(2)=1.

It is clear, then, that r(x) = 1. Thus,

p)=qgx)+1=x(x-1)-1+1=1-x+x°

Simpson’s method is exact for polynomials of degree less than or equal to 3, and will thus give the exact
value for the integral of p: With n =4 (h =1) we find

2 1 28
f p(x)dxz§(7+4-3+2-1+4-1+3)=?.
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