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Solution suggestions

1a Using partial integration we compute

a0 = 1

2π

∫ π

−π
f (t ) dt = 1

2π

∫ π

0
t 2 dt = π2

6

an = 1

π

∫ π

−π
f (t )cosnt dt = 1

π

∫ π

0
t 2 cosnt dt

= 1

π

[
2t

n2 cosnt + −2+n2t 2

n3 sinnt

]π
t=0

= 2

n2 cosnπ= (−1)n 2

n2

bn = 1

π

∫ π

−π
f (t )sinnt dt = 1

π

∫ π

0
t 2 sinnt dt

= 1

π

[
2t

n2 sinnt + 2−n2t 2

n3 cosnt

]π
t=0

= 1

π

(
2

n3 cosnπ− π2

n
cosnπ− 2

n3

)
=

{
−π

n if n even
π
n − 4

n3π
if n odd.

for n = 1,2, . . . . The Fourier series of f (t ) is

a0 +
∞∑

n=1
(an cosnt +bn sinnt ) .

One could compute the complex Fourier series instead.

1b Look at the Fourier series of f near π. Then

π2

2
= 1

2

(
lim

t→π+
f (t )+ lim

t→π−
f (t )

)
= a0 +

∞∑
n=1

(an cosnπ+bn sinnπ)

= a0 +
∞∑

n=1
an · (−1)n

= π2

6
+

∞∑
n=1

(−1)n 2

n2

= π2

6
+

∞∑
n=1

2 · (−1)2n

n2

= π2

6
+2

∞∑
n=1

1

n2 ,

which gives
∞∑

n=1

1

n2 =
π2

2 − π2

6

2
= π2

6
.

2a Setting u(x, t ) = X (x)T (t ) gives
X ′′

X
= T ′

c2T
= k
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for some constant k, so we have the two ordinary differential equations

X ′′−k X = 0 (1)

T ′− c2kT = 0 (2)

subject to X (0) = 0 and X (1) = 0. It is easily verified that k ≥ 0 yields only trivial solutions (use the
boundary conditions for equation (1)), so consider k =−p2 < 0. The solutions of equation (1) are then
of the form

X (x) = Ap cos px +Bp sin px,

and since 0 = X (0) = Ap , we have
X (x) = Bp sin px.

Since 0 = X (1) = Bp sin p, non-trivial solutions must have p ∈ {π,2π, . . . }, giving

Xl (x) = Bl sin lπx

for l = 1,2, . . . . Thus equation (2) becomes

T ′
l (t )+ (cπl )2Tl (t ) = 0,

which has solutions
Tl (t ) = e−(cπl )2t .

The solutions asked for are therefore linear combinations of

ul (x, t ) = Bl e−(cπl )2t sin lπx.

2b Letting v(x, t ) = u(x, t )−x, we see that v satisfies the same PDE as u, i.e.

∂v

∂t
= c2 ∂

2v

∂x2 .

The boundary condition u(1, t ) = 1 gives v(1, t ) = 0, so in fact v satisfies the same boundary conditions
as u did in problem 2a, and hence the general solution is (from 2a)

v(x, t ) =
∞∑

l=1
Bl e−(cπl )2t sin lπx.

The initial condition x(2−x) = u(x,0) = v(x,0)+x gives v(x,0) = x −x2, and so

x −x2 = v(x, t ) =
∞∑

l=1
Bl sin lπx.

Since the left hand side of this equation defines a continuous function f : [0,1] →R, the Fourier series
theorem gives that the Bl ’s are in fact the Fourier coeffieients of the 2-periodic odd extension of f . We
compute these:

Bl = 2
∫ 1

0
(x −x2)sin lπx dx = 2

∫ 1

0
x sin lπx dx −2

∫ 1

0
x2 sin lπx dx.

Calling the first term α1 and the second term α2, we find by partial integration

α1 = 2

lπ
(−1)l+1

α2 =−α1 − 4

(lπ)3

(
(−1)l −1

)
.

Thus

Bl =α1 +α2 =− 4

(lπ)3

(
(−1)l −1

)
=

{
0 if l even

8
(lπ)3 if l odd,

and hence the solution of the PDE with given boundary conditions is

u(x, t ) = v(x, t )+x = x + 8

π3

∞∑
m=0

1

(2m +1)3 e−(cπ(2m+1))2t sin(2m +1)πx.
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3a We have

y ′(t ) = t
(
y(t )

)2 + t = t
(
(y(t ))2 +1

)= f (t , y(t )),

as well as t0 = 0 and y0 = 1. With h = 0.2,

k1 = h f (t0, y0) = 0.2 · f (0,1) = 0

k2 = h f (t0 +h, y0 +k1) = 0.2 · f (0.2,1) = 0.08.

Thus

y(0.2) ≈ ŷ = y1 = y0 + 1

2
(k1 +k2) = 1.04.

3b From problem 3a and the text we have

y(0.2) = ŷ + ε̂= 1.04+ ε̂.

With two steps, we have y(0.2) ≈ ỹ , i.e.

y(0.2) = ỹ +2ε̃= 1.040714+2ε̃,

where ε̃ is the error in each of the two steps. Since the local error in Heun’s method is of order 3, and ỹ
is computed with half the step size of ŷ , we have

ε̃≈ 1

23 ε̂=
1

8
ε̂.

Thus

1.04+ ε̂= y(0.2) = 1.040714+2ε̃≈ 1.040714+2
1

8
ε̂,

which when solved for ε̂ results in ε̂≈ 0.96 ·10−3.

4a We compute

F ( f )(ω) = f̂ (ω) = 1p
2π

∫ ∞

−∞
f (x)e−iωx dx = 1p

2π

∫ ∞

0
e−ax e−iωx dx

= 1p
2π

∫ ∞

0
e−(a+iω)x dx = 1p

2π(a + iω)
.

From now on, set a = 1 to get

f̂ (ω) = 1p
2π(1+ iω)

.

Observe that

0 = f (−1) =F−1( f̂ )(−1) = 1p
2π

∫ ∞

−∞
1p

2π(1+ iω)
e iω·(−1) dω

= 1

2π

∫ ∞

−∞
1

1+ iω
(cosω− i sinω) dω

= 1

2π

∫ ∞

−∞
1− iω

1+ω2 (cosω− i sinω) dω

= 1

2π

∫ ∞

−∞
cosω− i sinω− iωcosω−ωsinω

1+ω2 dω

= 1

2π

∫ ∞

−∞
cosω−ωsinω

1+ω2 dω− i

2π

∫ ∞

−∞
sinω+ωcosω

1+ω2 dω.

The second integral on the last line must be zero since the left hand side is real (in fact, the integrand is
odd, so the integral is indeed zero). The integrand in the first integral is even, so

0 = 1

2π

∫ ∞

−∞
cosω−ωsinω

1+ω2 dω= 1

π

∫ ∞

0

cosω−ωsinω

1+ω2 dω,

and so the integral we were asked to compute is 0.
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4b For b > 0, define gb : R→ R by gb(x) = e−bx2
. We recognize the integral as a convolution, so that the

equation in the problem becomes
f ∗ g2 = g1.

Fourier transforming gives p
2π f̂ · ĝ2 = ĝ1,

and we know well that

ĝb(ω) = 1p
2b

e−ω
2/4b ,

so we have

f̂ (ω) = 1p
2π

1p
2

e−ω
2/4

1p
4

e−ω2/8
= 1p

π
e−ω

2/8 = 2p
π

ĝ2(ω).

Taking the inverse Fourier transform gives

f (x) = 2p
π

g2(x) = 2p
π

e−2x2
.

5a While it is perfectly OK to approach the problem directly using Newton’s divided differences or a
Lagrange scheme, we can save ourselves some work by noticing that the polynomial q given by
q(x) = p(x)−1 has zeros at 0 and 1. We thus have

p(x)−1 = q(x) = x(x −1)r (x)

for some polynomial r . In particular, the unused interpolation data becomes

7 =−2 · (−2−1)r (−2)+1 = 6r (−2)+1 =⇒ r (−2) = 1

3 =−1 · (−1−1)r (−1)+1 = 2r (−1)+1 =⇒ r (−1) = 1

3 = 2 · (2−1)r (2)+1 = 2r (2)+1 =⇒ r (2) = 1.

It is clear, then, that r (x) = 1. Thus,

p(x) = q(x)+1 = x(x −1) ·1+1 = 1−x +x2.

5b Simpson’s method is exact for polynomials of degree less than or equal to 3, and will thus give the exact
value for the integral of p: With n = 4 (h = 1) we find∫ 2

−2
p(x) dx = 1

3
(7+4 ·3+2 ·1+4 ·1+3) = 28

3
.
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